Bay Area Retina Associates
Bay Area Retina Associates
Bay Area Retina Associates
Contact BARA


Use this menu to select a topic:


Or scroll up and down to browse topics.

Intravitreal injection

Intravitreal injection is a method of delivering medication directly into the back part of the eye, the vitreous cavity. The retina lines the vitreous cavity, and medications delivered into the vitreous cavity can act directly on the retina and adjacent tissues. Intravitreal injections are given in the office using topical anesthesia (drops or gel placed on the surface of the eye).

Medications delivered by intravitreal injection include ranibizumab (Lucentis), bevacizumab (Avastin), triamcinolone (Kenalog), and dexamethasone (Ozurdex implant). These medications are used in the treatment of various diseases including age-related macular degeneration, diabetic macular edema, proliferative diabetic retinopathy, central retinal vein occlusion, branch retinal vein occlusion, and cystoid macular edema. The success of intravitreal medications has led to an increasing number of diseases treated in this manner.

Before receiving an intravitreal injection, your retinal physician will examine your eye. Our staff may ask you to confirm which eye is being injected, and a sticker will placed above that eye to ensure that the correct eye is always injected. Numbing drops will be placed in your eye along with antiseptic and antibiotic solutions. You may have a number gel placed on the surface of the eye, or you may have cotton tips soaked in numbing medicine placed in the corner of your eye. These numbing agents are left in place for several minutes to minimize discomfort during the injection.

Every procedure has risks associated with it. The greatest risks of intravitreal injection are infection and retinal tears or detachment. Large studies have shown that the risk of these complications is less than 1 in 2,000. While these complications are rare, they may result in permanent vision loss. For this reason, it is important for patients who have undergone intravitreal injection to call the office immediately if they experience eye pain, decreased vision, sensitivity to lights, increasing redness, or abnormal eye discharge during the week following injection.

While intravitreal injection is safe and well tolerated, some minor inconveniences cannot be avoided. In order to reduce the risk of infection, the surface of the eye is cleaned with an antiseptic solution prior to injection. This solution irritates the surface of the eye, and as a result many patients experience a foreign body sensation after injection (dryness, scratchiness, or the sensation of a foreign object such as sand in the eye). This sensation may last the rest of the day following injection but almost always resolves by the next morning. In addition, the white part of the eye will frequently have a red blood spot in the location of the injection. The surface of the eye is covered with fine blood vessels, and one of these small vessels will frequently break during injection. The blood spot may be small and barely noticeable, or it may take on a rather dramatic appearance. Patients taking aspirin or blood thinners may experience larger blood spots, but this is not a reason to stop or decrease such medications.


Laser photocoagulation

LaserPRP

Laser photocoagulation is a controlled method of delivering focused laser power to the retina, creating limited burns. Laser photocoagulation has been used in retinal surgery for over xx years.

Several different types of lasers are used in ophthalmology. The type of laser used in retinal treatment is different from the lasers used in glaucoma treatment or refractive surgery such as LASIK.

Laser photocoagulation is used in the office to treat a variety of conditions including: Diabetic macular edema, proliferative diabetic retinopathy, retinal vein occlusion, retinal tears or holes, retinal detachment, high risk lattice degeneration, and retinal arterial macroaneurysm. Depending on the condition being treated, laser may be delivered with the surgeon wearing a headset (indirect ophthalmoscope) while the patient lays in an examination chair, or with the surgeon and patient sitting on opposite sides of table-mounted equipment (slit lamp).

Laser Tear

Some treatments, such as those for retinal edema or small tears, may require relatively few laser burns. Other treatments, such as those for proliferative retinopathies or large retinal tears, may require hundreds of pulses delivered in rapid succession. Your surgeon will work with you to minimize any discomfort during the procedure by modifying the laser settings, using eye drops, and occasionally using a numbing injection around the eye.

Because laser photocoagulation is a non-invasive procedure, patients do not routinely require any eye drops after treatment. If the eye feels irritated or dry after treatment, over-the-counter artificial tear drops may be used to sooth the eye. After extensive treatments, some patients experience a minor headache, which may be treated using over-the-counter medications such as acetaminophen (Tylenol) or ibuprofen (Motrin) as needed. The vision is often blurred for several hours after laser treatment, and it is normal to experience colored hues in the vision during this time. Vision in the treated eye may not return to pre-treatment levels for one or two days in some cases.


Cryotherapy

Cryotherapy is a freezing treatment that has been used by retinal physicians for more than xx years in the treatment of retinal tears, retinal detachment, and a few less common conditions such as Coats disease.

Cryotherapy is delivered using a small probe to the outer surface of the eye by the surgeon while the patient reclines in an examination chair. Each treatment freezes a small amount of tissue from the outer surface of the eye through the eye wall to the retina. The freeze damages the retina just enough to form a scar. The scar serves as an adhesive between the retina and the eye wall, thereby sealing any breaks in the retina. In rare cases, cryotherapy is used to destroy abnormal blood vessels that cannot be safely treated using a laser.

Most patients describe the discomfort of cryotherapy as an "ice cream headache." This sensation usually lasts only a few seconds. Your surgeon will give you numbing eye drops in order to make you as comfortable as possible during treatment.

Because cryotherapy is a non-invasive procedure, patients do not routinely require any eye drops after treatment and there is no significant risk of infection. If the eye feels irritated or dry after treatment, over-the-counter artificial tear drops may be used to sooth the eye. Some patients experience a headache, which may be treated using over-the-counter medications such as acetaminophen (Tylenol) or ibuprofen (Motrin) as needed. The vision is often blurred for several hours after treatment treatment, and vision in the treated eye may not return to pre-treatment levels for one or two days in some cases.


Photodynamic therapy

PDT

Photodynamic therapy (PDT) is a type of laser treatment initially approved for use in the treatment of wet age-related macular degeneration (AMD). While the first line treatment for wet AMD now consists of medication injections directly into the eye, PDT is still sometimes used in combination with these therapies. PDT is also used in the treatment of central serous chorioretinopathy (CSCR), polypoidal choroidal vasculopathy (PCV), and choroidal hemangioma.

PDT is a non-thermal or "cold" laser. Unlike the lasers used in retinal photocoagulation, which use thermal energy to create burns in the retina, PDT uses a laser to activate medication given intravenously. Verteporfin is a medication given through an IV. The medication travels throughout the blood stream into the choroid, which lies behind the retina. The choroid is where the abnormal blood vessels of wet AMD originate, and it is also the source of abnormal activity in other diseases such as CSCR, PCV and choroidal hemangioma. The PDT laser activates verteporfin in the region of abnormal blood vessels, thereby closing off the abnormal blood vessels and reducing the leakage of blood and fluid into the space between the retina and choroid.

Risks of PDT

Side effects and what to expect


Pneumatic retinopexy

Pneumatic retinopexy is a technique used to treat retinal detachment in the office, thereby avoiding a trip to the operating room.

Retinal detachment occurs when the gel inside the eye (the vitreous gel) pulls away from the retina and causes a retinal tear. Sometimes this occurs because of trauma but most of the time it is a natural age-related process. Once the retina is torn, fluid can move from the middle of the eye through the tear into the space between the retina and the eye wall. As more fluid enters this space, the retina cleaves (or "detaches") from the eye wall. If the retinal detachment extends into the central part of the retina, central vision may be damaged.

Pneumatic retinopexy consist of at least procedures. 1. The tear in the retina needs to be sealed to the eye wall. This is usually done with cryotherapy, a freezing treatment applied to the outside of the eye after numbing medications are given. 2. Gas is injected into the back part of the eye (vitreous cavity). When the head is later positioned appropriately, this bubble pushes the fluid out from under the retina and pushes the retinal tear closed. 3. Fluid is removed from the eye in order to make place for the gas. This can be done before the gas is injected, after the gas is injected, or both before and after.

Positioning by the patient immediately after this procedure is critical. Make sure you understand your doctor's positioning instructions before leaving the office. You will see your doctor frequently in the weeks following the procedure in order to monitor the process of retinal reattachment and assess the need for further intervention, such as repeating the steps described above or going to the operating room for surgical repair.

Not all retinal detachments can be fixed using pneumatic retinopexy. For those retinal detachments which are amenable to pneumatic retinopexy, the chance of successful repair depends on patient positioning, patient cooperation during the procedure, and characteristics of the retina and other eye tissues. Your doctor will discuss with you the various options available for repair of retinal detachment, depending on the specifics of your detachment.

The greatest risk of pneumatic retinopexy is infection, which occurs in less than 1 in 2,000 procedures. This risk is still present if surgical repair is chosen rather than pneumatic retinopexy. Infection can result in permanent vision loss, but retinal detachment almost certainly results in permanent vision loss if left unrepaired.


Scleral Buckle

Scleral buckle is a surgical procedure used to repair retinal detachment. Retinal detachment occurs when the gel inside the eye (the vitreous gel) pulls away from the retina and causes a retinal tear. Sometimes this occurs because of trauma but most of the time it is a natural age-related process. Once the retina is torn, fluid can move from the middle of the eye through the tear into the space between the retina and the eye wall. As more fluid enters this space, the retina cleaves (or "detaches") from the eye wall. If the retinal detachment extends into the central part of the retina, central vision may be damaged.

Scleral buckle surgery takes place in an operating room and usually takes 1-2 hours to complete. Actual time in the hospital or surgery center is longer due to preparation time, anesthesia induction and recovery, safety checks and administrative work. Scleral buckle surgery is usually performed as an outpatient procedure, meaning that overnight hospitalization is not required. The surgery may be performed under either local anesthesia (sedation and a numbing injection around the eye) or under general anesthesia (completely asleep). The decision to use local versus general anesthesia is made by the surgeon in conjunction with the patient and anesthesiologist.

The term "sclera buckle" refers to a silicone band which is placed around the outside of the eye, gently squeezing the eye wall and supporting the weak areas in the retina, including the tears that caused the retinal detachment. Sometimes multiple silicone elements are used in order to provide appropriate support. In some cases, the surgeon will drain the fluid that has collected under the retina, and after draining this fluid the surgeon may inject a bubble of air or gas into the eye. If air or gas is injected into the eye, the surgeon may ask the patient to position the head after surgery so that the bubble supports the retina while it heals.

Unlike vitrectomy surgery, which takes place primarily inside the eye, scleral buckle surgery takes place primarily outside of the eye. A patch and shield are placed on the eye at the end of surgery, and both the eyelids and the white part of the eye may appear red and swollen when the patch is removed. This redness and swelling usually decrease over 1-2 weeks following surgery. It is normal to experience a foreign body sensation after surgery (a sensation of sand or grit in the eye). This sensation comes from the stitches used on the surface of the eye as well as the eye surface tissue which has been manipulated during surgery. This sensation should decrease as the days and weeks go by after surgery.

After surgery, the prescription for glasses or contact lenses may change slightly. We recommend waiting several months after surgery before changing the prescription since an accurate prescription is difficult to obtain until the eye has healed properly.


Vitrectomy

Vitrectomy

Vitrectomy surgery is the basis for many different types of retinal surgery, including repair of retinal detachment, repair of macular hole, removal of epiretinal membrane, and removal of vitreous hemorrhage.

The back part of the eye (the vitreous cavity) contains the vitreous gel, a clear substance which is 99% water. "Vitrectomy" refers to removal of this gel. In the operating room and using a microscope, the surgeon usually makes three small openings in the white part of the eye (sclera). These openings are approximately the size of the needles used to draw blood from your arm. The surgeon uses various fine instruments including lights, suction, scissors, forceps and laser probes to perform surgery. At the end of surgery, the gel is not replaced. The eye produces its own fluid, and in some cases the surgeon may leave a bubble of air or gas inside the eye, which the body will absorb and replace with clear fluid. In some complex surgeries, the surgeon may leave the eye filled with silicone oil, which provides long term support to the retina but which requires an additional surgery to remove.

In most cases, vitrectomy refers to much more than just removal of the gel. For example, an epiretinal membrane is removed using tiny forceps, or heavy liquid may be used to flatten a retinal detachment, and laser may be used to seal a tear in the retina. In all of these cases, the gel must be removed before these other steps are possible, and so all of these procedures are referred to broadly as vitrectomy.

The greatest risks of vitrectomy are infection, retinal detachment or bleeding. The chance of these problems is less than 1 in 4,000, and permanent vision loss may occur in these situations. Patients are given medications before, during and after surgery in order to reduce the chance of such complications.

For patients who have not previously had cataract surgery, vitrectomy surgery almost always accelerates the progression of cataract in the operated eye. Consequently, cataract surgery should be expected within 1-2 years after vitrectomy surgery.

/* Footer */